Авто

Трехфазный трансформатор: схема подключения и способы соединения обмоток

Назначение и виды



Трехфазный трансформатор

Классический станционный трехфазный силовой трансформатор используется для преобразования высоковольтной энергии в удобную для потребителя форму. На его первичные обмотки подается высокое напряжение (6,3-10 киловольт), а на выходе получают более удобные для использования в быту 220 Вольт. Эта величина измеряется между фазами и нулевой жилой трансформатора, называемой нейтралью. Ее принято обозначать как фазное напряжение, в отличие от линейных 380 Вольт, отсчитываемых между каждой из фаз.

Трехфазные понижающие трансформаторы этого класса обеспечивают передачу тока от местной подстанции по подземному кабелю или линии электропередач непосредственно до конечного потребителя. Для этих целей используется специальный 4-хжильный кабель в бронированном сердечнике, либо воздушный провод марки СИП. По ним электрическая энергия доставляет прямо по назначению — на вводно-распределительные устройства обслуживаемых территорий и объектов.

По своему функциональному назначению 3 фазные трансформаторы подразделяются на следующие классы:

  • линейные (станционные) устройства;
  • специальные преобразовательные агрегаты.

Особо выделяются трехфазные разделительные трансформаторы, используемые для развязки электрических схем и силовых цепей.

Испытательный трансформатор

Специальные устройства делятся на следующие виды:

  • Испытательные трансформаторы. К ним принято относить трехфазные автотрансформаторные системы.
  • Устройства, используемые для питания специальной аппаратуры: сварочных агрегатов, в частности.
  • Симметрирующие трансформаторные агрегаты.

Первые два типа применяются в исследовательских целях. Трансформаторы симметрирующие трехфазные используются для устранения перекоса фаз, возникающего в электрических сетях из-за неравномерности распределения нагрузок.

В электротехнике также встречаются варианты двухфазных трансформаторов, нередко применяемых в электронных схемах и устройствах автоматики. Они устроены так, что два выходных напряжения сдвинуты одно относительно другого на 90 электрических градусов. Чаще всего такие электротехнические решения используются в сварочном оборудовании.

В чем его достоинства и недостатки

Любое электротехническое приспособление обладает рядом преимуществ и недостатков. Однофазные электрические трансформаторы этому не исключение. Достоинств у них больше, чем минусов. Основными из них являются:

  • обладают одним из самых больших коэффициентов полезного действия (КПД), который составляет 98 %;
  • отлично охлаждаются и обладают повышенной стойкостью к перегрузкам и кратковременным скачкам напряжения;
  • экологическая безопасность сухого вида. Масла в них нет, а значит, что окружающей среде ничего не может навредить даже после утилизации;
  • отсутствие нужды соблюдения особых противопожарных мер в местах установки трансформаторов;
  • сравнительно небольшие размеры, позволяющие устанавливать аппараты в небольшие отсеки.

Вам это будет интересно Электросчетчик Энергомера СЕ 101

Не лишены эти приборы и ряда недостатков, которые зависят от их вида и места применения:

Читайте также:  Выбираем лучший уличный светодиодный светильник на солнечных батареях

  • сложное обслуживание, если аппарат масляный. Его регулярно нужно проверять на пробой и подтекание резиновых прокладок, замена которых достаточно сложная;
  • сухие однофазные приборы не переносят повышенную влажность, ветер, химические и физические воздействия, а также загрязнение;
  • высокая стоимость сухих трансформаторов по сравнению с масляными.


Обычный прибор для однофазных сетей

Схема сдвига фаз токов конденсаторами и дросселем: что мне не понравилось

Это третья обещанная в заголовке конструкция, которую я реализовал два десятка лет назад, проверил в работе, а потом забросил. Она позволяет использовать до 90% трехфазной мощности двигателя, но обладает недостатками. О них позже.

Собирал я преобразователь трехфазного напряжения на мощность 1 киловатт.

Схема трехфазного преобразователя напряжения

В его состав входят:

  • дроссель с индуктивным сопротивлением на 140 Ом;
  • конденсаторная батарея на 80 и 40 микрофарад;
  • регулируемый реостат на 140 Ом с мощностью 1000 ватт.

Одна фаза работает обычным способом. Вторая с конденсатором сдвигает ток вперед на 90 градусов по ходу вращения электромагнитного поля, а третья с дросселем формирует его отставание на такой же угол.

В создании фазосдвигающего магнитного момента участвуют токи всех трех фаз статора.

Корпус дросселя пришлось собирать механической конструкцией из дерева на пружинах с резьбовой настройкой воздушного зазора для наладки его характеристик.

Конструкция дросселя

Конструкция реостата — это вообще «жесть». Сейчас его можно собрать из мощных сопротивлений, купленных в Китае.

Мощное сопротивление из Китая

Мне даже приходила мысль использовать водяной реостат.

Водяной реостат

Но я от нее отказался: уж слишком опасная конструкция. Просто намотал на асбестовой трубе толстую стальную проволоку для проведения эксперимента, положил ее на кирпичи.

Когда запустил двигатель циркулярной пилы, то он работал нормально, выдерживал приложенные нагрузки, нормально распиливал довольно толстые колодки.

Все бы хорошо, но счетчик намотал двойную норму: этот преобразователь берет такую же мощность на себя, как и двигатель. Дроссель и проволока неплохо нагрелись.

Из-за высокого потребления электроэнергии, низкой безопасности, сложной конструкции я не рекомендую такой преобразователь.

Когда 380, а когда 220?

Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.

Читайте также:  Измерение больших напряжений при помощи мультиметра

Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка…

Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее ), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.

Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.

Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.

Про выбор защитного автомата я уже . А про выбор сечения провода – . Там же – жаркие обсуждения вопросов.

Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.

Например, 15 кВт – это для одной фазы около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.

Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).

Подключение трехфазного двигателя к однофазной сети по схеме звезды

Начну с предупреждения: даже опытные электрики во время работы допускают ошибки, которые называются «человеческий фактор». Что уж говорить про домашних мастеров…

Поэтому рекомендую в обязательном порядке подачу напряжения на собранную схему выполнять только через отдельный автоматический выключатель SF, правильно подобранный по нагрузке. Он спасет жизнь и здоровье.

Схема подключения звезды показана на картинке.

Схема подключения звезды

Концы обмоток собраны в одну точку горизонтальными перемычками внутри клеммной коробки. На нее никакие внешние провода не подключены.

Фаза (через автоматический выключатель) и ноль бытовой проводки подаются на две разные клеммы начал обмоток. К свободной клемме (на рисунке Н2) подключена параллельная цепочка из двух конденсаторов: Cp — рабочий, Сп — пусковой.

Рабочий конденсатор соединен второй обкладкой жестко с фазным проводом, а пусковой — через дополнительный выключатель SA.

При запуске электродвигателя ротор необходимо раскрутить из состояния покоя. Он преодолевает усилия трения подшипников, противодействия среды. На этот период требуется повысить величину магнитного потока статора.

Делается это за счет увеличения тока через дополнительную цепочку пускового конденсатора. После выхода ротора на рабочий режим его нужно отключить. Иначе пусковой ток перегреет обмотку двигателя.

Выполнять отключение цепочки пуска простым переключателем не всегда удобно. Для автоматизации этого процесса используют схемы с реле или пускателями, работающими по времени.

Среди мастеров самодельщиков пользуется популярностью кнопка пуска от советских стиральных машин активаторного типа. У нее встроено два контакта, один из которых после включения отключается автоматически с задержкой: то, что надо в нашем случае.

Если приглядитесь внимательно на принцип подачи однофазного напряжения, то увидите, что 220 вольт приложены к двум последовательно подключенным обмоткам. Их общее электрическое сопротивление складывается, ослабляя величину протекающего тока.

Подключение трехфазного двигателя к однофазной сети по схеме звезды используется для маломощных устройств, отличается повышенными потерями энергии до 50% от трехфазной системы питания.

Схема треугольник: преимущества и недостатки

Подключение электродвигателя по этому способу предполагает использование той же внешней цепочки, что и у звезды. Фаза, ноль и средняя точка нижних обкладок конденсаторов монтируются последовательно на три перемычки клеммной коробки.

Схема подключения треугольник

За счет переключения выводов обмоток по схеме треугольника подводимое напряжение 220 создает больший ток в каждой обмотке, чем у звезды. Здесь меньшие потери энергии, выше КПД.

Подключение двигателя по схеме треугольника в однофазной сети позволяет полезно использовать до 70-80% потребляемой мощности.

Для формирования фазосдвигающей цепочки здесь требуется использовать меньшую емкость рабочих и пусковых конденсаторов.

При включении двигатель он может начать вращение не в ту сторону, которая требуется. Нужно сделать ему реверс.

Для этого достаточно в обеих схемах (звезды или треугольника) поменять местами приходящие от сети провода на клеммной колодке. Ток потечет по обмотке в противоположную сторону. Ротор изменит направление вращения.

Чем трёхфазная сеть завоевала популярность

По сути, возможно использование 4, 5 или даже 10 фаз, однако это будет нерациональным и повысит стоимость и без того недешёвой электроэнергии. С точки зрения разумности, электромагнитного поля трёхфазной системы вполне достаточно для вращения электродвигателя. А теперь представим, что фаз будет 5. В этом случае увеличивается количество обмоток двигателя, что приводит к излишним расходам на изготовление, а значит, увеличивает итоговую стоимость агрегата. При этом никаких видимых улучшений по мощности не будет.


Вот так могут подключаться электродвигатели к трёхфазной сети

Если же говорить о двух фазах, то для запуска асинхронного электродвигателя их будет недостаточно, придётся монтировать систему, включая в схему конденсатор, который обеспечит необходимый сдвиг. При этом падение мощности обеспечено.

Немного физики: объяснение рациональности использования трёх фаз

Если говорить цифрами, то можно отметить, что полный цикл вращения ротора электродвигателя составляет 360º, а сдвиг фаз в системе с напряжением 380 В равен 120º. Путём нехитрых вычислений можно сделать вывод, что 3·120º=360. Вот и ответ на вопрос, почему используют именно 3 фазы.


Вне зависимости от количества фаз, вся коммутация должна быть аккуратной

Устройство трансформатора



Устройство трехфазного силового трансформатора

По своему устройству трехфазные трансформаторы представляют сборную конструкцию, состоящую из следующих узлов:

  • основание, изготавливаемое в виде прочного пластикового каркаса;
  • магнитопровода, размещенные в каркасных секциях;
  • набор первичных и вторичных катушек с проволочными обмотками;
  • распределительная (распаечная) панель с контактными колодками;
  • система охлаждения, необходимая для отвода тепла от рабочей зоны.

Каждое из известных исполнений таких устройств в том или ином виде содержит все обозначенные узлы. При этом они различаются способом соединения обмоток, а также типом используемого в них магнитопровода. Конструктивные особенности отдельных моделей отражаются на их рабочих характеристиках, в частности на величине потерь в магнитопроводе и коэффициенте полезного действия.

Исключение составляет панель распайки отводов обмоток трансформатора, благодаря которой удается комбинировать группы подключений для получения нужной конфигурации.

Способы соединения обмоток



Схемы соединения обмоток трехфазных трансформаторов

Основное отличие различных трансформаторных схем состоит в используемых при их включении конфигурациях (способах соединения обмоток). При организации централизованного энергоснабжения традиционно применяются две классические схемы, называемые «треугольник» и «звезда». Первый вариант предполагает последовательное включение первичных и вторичных фазных обмоток: конец одной катушки подсоединяется к началу следующей).

При использовании схемы «звезда» начала всех фазных жил первичной и вторичной обмоток объединяются в одной точке, называемой нейтралью, а их концы подсоединяются к 3-хпроводной нагрузочной линии. В этом случае для передачи электроэнергии потребуется кабель, содержащий четыре жилы. При подключении в линию вторичных трансформаторных обмоток, соединенных в «треугольник», используется только три жилы. Возможен еще один вариант их включения, который называется «взаимосвязанная звезда». Однако из-за редкости его применения он не рассматривается.

Варианты конфигураций



Варианты обмоток

При организации систем энергоснабжения возможно несколько комбинаций включения первичных и вторичных обмоток трехфазного трансформатора. Набор производимых при этом коммутационных действий:

  • Первичная обмотка выполняется как «звезда», а вторичная – в виде «треугольника».
  • При втором подходе используется обратный порядок включения.
  • В третьем случае применяется уже рассмотренная комбинация типа «звезда»-«звезда» или же вариант с двумя треугольниками (другое название – дельта-дельта).

Для учета всех способов включения первичных и вторичных обмоток и последующего расчета параметров трансформатора в электротехнике используются специальные идентификационные таблицы. В них приводятся возможные сочетания и комбинации, используемые, если требуется подключить трансформатор в линию и получить от него максимальную отдачу. От правильности выбора этого сочетания в каждом конкретном случае зависит эффективность работы всей системы энергоснабжения.

Как подобрать конденсаторы: 3 важных критерия

Трехфазный двигатель создает вращающееся магнитное поле статора за счет равномерного прохождения синусоид токов по каждой обмотке, разнесенных в пространстве на 120 градусов.

Трехфазное напряжение

В однофазной сети такой возможности нет. Если подключить одно напряжение на все 3 обмотки сразу, то вращения не будет — магнитные поля уравновесятся. Поэтому на одну часть схемы подают напряжение, как есть, а на другую сдвигают ток по углу вращения конденсаторами.

Сложение двух магнитных полей создает импульс моментов, раскручивающих ротор.

От характеристик конденсаторов (величины емкости и допустимого напряжения) зависит работоспособность создаваемой схемы.

Для маломощных двигателей с легким запуском на холостом ходу в отдельных случаях допустимо обойтись только рабочими конденсаторами. Всем остальным движкам потребуется пусковой блок.

Обращаю внимание на три важных параметра:

  1. емкость;
  2. допустимое рабочее напряжение;
  3. тип конструкции.

Как подобрать конденсаторы по емкости и напряжению

Существуют эмпиреческие формулы, позволяющие выполнять простой расчет по величине номинального тока и напряжения.

Как подобрать конденсаторы

Однако люди в формулах часто путаются. Поэтому при контроле расчета рекомендую учесть, что для мощности в 1 киловатт требуется подбирать емкость на 70 микрофарад для рабочей цепочки. Зависимость линейная. Смело ей пользуйтесь.

Доверять всем этим методикам можно и нужно, но теоретические расчеты необходимо проверить на практике. Конкретная конструкция двигателя и прилагаемые нагрузки на него всегда требуют корректировок.

Конденсаторы рассчитываются под максимальное значение тока, допустимого по условиям нагрева провода. При этом расходуется много электроэнергии.

Если же электродвигатель преодолевает нагрузки меньшей величины, то емкость конденсаторов желательно снизить. Делают это опытным путем при наладке, замеряя и сравнивая токи в каждой фазе амперметром.

Чаще всего для пуска асинхронного электродвигателя используют металлобумажные конденсаторы.

Конденсаторы металлобумажные

Они хорошо работают, но обладают низкими номиналами. При сборке в конденсаторную батарею получается довольно габаритная конструкция, что не всегда удобно даже для стационарного станка.

Сейчас
промышленностью выпускаются малогабаритны электролитические конденсаторы, приспособленные для работы с электродвигателями на переменном токе.

Конденсаторы для электродвигателя

Их внутреннее устройство изоляционных материалов приспособлено для работы под разным напряжением. Для рабочей цепочки оно составляет не менее 450 вольт.

У пусковой схемы с условиями кратковременного включения под нагрузку оно уменьшено до 330 за счет снижения толщины диэлектрического слоя. Эти конденсаторы меньше по габаритам.

Это важное условие следует хорошо понимать и применять на практике. Иначе конденсаторы на 330 вольт взорвутся при длительной работе.

Скорее всего для конкретного двигателя одним конденсатором не отделаться. Потребуется собирать батарею, используя последовательное и параллельное соединение их.

Последовательное и параллельное соединение конденсаторов

При параллельном подключении общая емкость суммируется, а напряжение не меняется.

Последовательное соединение конденсаторов уменьшает общую емкость и делит приложенное напряжение на части между ними.

Какие типы конденсаторов можно использовать

Номинальное напряжение сети 220 вольт — это действующая величина. Ее амплитудное значение составляет 310 вольт. Поэтому минимальный предел для кратковременной работы при запуске выбран 330 V.

Действующее напряжение

Запас напряжения до 450 V для рабочих конденсаторов учитывает броски и импульсы, которые создаются в сети. Занижать его нельзя, а использование емкостей с большим резервом значительно увеличивает габариты батареи, что нерационально.

Для фазосдвигающей цепочки допустимо использовать полярные электролитические конденсаторы, которые созданы для протекания тока только в одну сторону. Схема их включения должна содержать токоограничивающий резистор в несколько Ом.

Схема подключения полярных конденсаторов

Без его использования они быстро выходят из строя.

Перед установкой любого конденсатора необходимо проверить его реальную емкость мультиметром, а не полагаться на заводскую маркировку. Особенно это актуально для электролитов: они зачастую преждевременно высыхают.

Напряжения

Самыми распространенными на сегодняшний день являются трехфазные двигатели на 380/220, 660/380 и 220/127 В. Что это значит, почему напряжения разбиты по парам? Дело в том, что при включении обмоток «звездой» требуется большее напряжение питания. К примеру 380/220 означает, что «звездой» двигатель нужно подключить к сети 380 В (линейное), а треугольником – 220 В (линейное). Поэтому прежде, чем выбирать схему, необходимо определиться, какие электродвигатель и сеть есть в нашем распоряжении.

Читайте также:  Как подключить газовый инфракрасный обогреватель к природному газу

Ну какое напряжение у нас в доме, мы, конечно, знаем. Осталось разобраться с двигателем. Взглянем на шильдики, расположенные на корпусе моторов. Согласно им оба эти мотора можно включить «треугольником» в сеть 220 В или «звездой» 380 В.

При этом в первом случае ток потребления будет несколько выше. Но, как было замечено выше, есть двигатели и на другое напряжение. Шильдики, фото которых представлены ниже, говорят о том, что их обладатели могут работать по схеме «звезда» в сети 380 и «треугольник» 660 В. Причем один из них (верхнее фото) способен использоваться в сетях 440/760 В, но частота этих сетей должна быть 60 Гц.

Важно! Вполне очевидно, что моторы из обоих примеров можно включить в сеть 380 В, но только по разным схемам – «треугольником» и «звездой» соответственно.

Как подключить трехфазный трансформатор в однофазную сеть

Оба эти варианта не подойдут параллелить обмотки трехфазного трансформатора нельзя вы спровоцируете обычное кз.
Можно в принципе среднюю обмотку вообще вырезать а оставшиеся крайние включить последовательно.
Трансформатор будет работать но на выходе напряжение упадет.
Средний сердечник трансформатора желательно выпилить вообще
тогда получится обычный однофазный транец.

Средний стержень врезать не хочется-теряется мощность. Подскажите ссылку в инете или литературу по расчету трансов на такую мощность, а то обычно дают формулы для трансов мощностью-до 1000 ватт.

Я тоже отпиливал крайнею обмотку, а первички включал в параллель.
Это лучший вариант.. Габариты уменьшаются.
Первичные обмотки рассчитаны на 220V, так что ничего отматывать не
нужно. Это не влияет на то каким образом были они включены, звездой или треугольником. Если концы в воздухе то вообще это не должно вас интересовать. А если они собраны на колодке, то нужно смотреть какой контакт что обозначает (начало или конец)
Пробовал я включать и в такой комбинации (никто не написал про нее):
Крайние катушки в параллель, начало с началом Н1Н3 и конец с концом К1К3.
А среднею наоборот, в противо фазе.
Т.е. там где начало Н1Н3, подключал конец К2, и на оборот. Работало.
.

Насчет того что без проблемм вместится обмотка на 3000в я сомневаюсь но вам разумеется виднее. Не забудьте только что кроме напряжения

в 3000в ваша вторичная обмотка должна еще обеспечивать ток не менее 500ма лучше 1а. Т.е. диаметр провода желательно
выбрать не менее 0.5мм

Прикиньте ради интереса. Скажем опытным путем вы установили для получения напряжения в 1в вам нужно намотать 1виток провода.

Итого для 3000в нам нужно разместить 3000витков при проводе 0.5mm это уже 15см.

Но не нужно забывать что имеем дело с высоковольтной обмоткой
т.е. нужно качественно изолировать слои обмотки возможно потребуется и пропитка. На изоляцию может уйти ещё 4-5см

Запитка 3х фазного Тр на 1у фазу

Крайние обмотки последовательно и в паралель им сдеднюю.

MOUZER
А как фазировать обмотки?
Наверное две крайние последовательно синфазно а среднюю паралельно им в противофазе,или подругому?

Я гдето это читал в теории только
Но думаю это можно выяснить опытным путём, вариантов то всего 4.

Соединяем концы первичных обмоток находящихся на крайних секциях сердечника. Если катушки абсолютно одинаковые, то соединяются одноименные выводы.
Втыкаем в сеть. И. получаем фейерверк. Это если не правильно включили обмотки между собой. Хотя если следовать выше написанному, должно быть все нормально.
Но, чтобы не рисковать, поступаем так. Первичную обмотку, расположенную на центральном стержне, втыкаем в сеть (220 вольт) и меряем напряжение на выводах той обмотки, которую мы получили, соединив последовательно крайние катушки. Напряжение должно быть тоже 220 вольт.
Если оно равно «0», значит неправильно соединили. Если напряжение на выводах соединенных последовательно крайних обмотках не равно напряжению сети, значит так соединять как предлагает MOUZERа в данном случае нельзя. Хотя по теории все правильно.
Если все хорошо, значит можно идти дальше. Теперь надо соединить первичную обмотку, расположенную на среднем стержне с крайними выводами общей обмотки. Как правильно?
Соединяем два любых вывода этих обмоток между собой. Чтобы проверить правильно мы это сделали или нет, подаем на вторичную обмотку, расположенную на среднем стержне напряжение (такое на которое эта обмотка рассчитана, а можно и меньше, скажем 30 вольт).
Меряем напряжение на свободных выводах. Оно должно быть равно»0″. Если нет меняем выводы, и если напряжение стало равно «0», соединяем оставшиеся выводы между собой.
Теперь можно сказать, половина дела сделана. Мотаете три вторичные обмотки исходя из необходимого напряжения. Между собой их включаете, естественно, последовательно. Если неправильно включите, ничего страшного не произойдет, напряжение на выходе будет равно разности, придется поменять концы и все.
Еще раз подчеркиваю: все это верно, если верно то, что привел в своем сообщении MOUZER.
Верно или нет станет понятно, когда проделаете то, что написано в четвертом абзаце этого опуса.

Читайте также:  Bootstrap как подключить шрифты

Источник

Особенности

Как правило, однофазные трансформаторы используют в электрических сетях и в роли источников питания различных устройствах.

Исходя из того факта, что нагрев провода прямо пропорционален квадрату току, идущего через провод, то при передаче энергии на дальние расстояния выгоднее будет использовать высокие напряжения и небольшие токи. Для исключения повреждений электроприборов и уменьшения объёма изоляции в домашних условиях лучше использовать низкие мощности.

Также читайте: Трёхфазный масляный трансформатор — ТМН

Ввиду этого, для уменьшения затрат на транспортировку электрической энергии в общей электросети в большом количестве применяются силовые трансформаторы: вначале увеличивают напряжение генераторов на электростанциях перед передачей энергии по кабелю, а уже после транспортировки уменьшают напряжение линий электропередач до нужного уровня в повсеместном использовании.

однофазный трансформатор
Однофазные трансформаторы

Понятие группы соединение обмоток трехфазного трансформатора

В трехфазных сетях используется два вида соединений: звезда и треугольник. При изготовлении конструкций может показаться, что существует всего четыре вида расположения обмоток:

  1. Звезда-звезда.
  2. Звезда-треугольник.
  3. Треугольник-звезда.
  4. Треугольник-треугольник.

обмотки трехфазного трансформатора

На деле все обстоит сложнее, поскольку в каждом виде соединений (звезде или треугольники) части обмоток могут быть соединены по-разному. В качестве примера можно привести обычных двухобмоточный трансформатор. Если у такого устройства совпадают начала и концы обмоток, то сдвиг фаз будет равен 0. Разворот одной из обмоток даст сдвиг фаз 180.

Также встречаются z-образные соединения обмоток (зигзаг). В таких конструкциях каждая из обмоток состоит из двух частей, расположенных на различных стержнях магнитопровода трансформатора.

Трехфазная сеть характеризуется сдвигом фаз одна относительно другой на 120. Поэтому всего насчитывается 12 групп соединения. Каждая группа характеризуется определенным сдвигом одноименных фаз на входе и выходе трансформатора.

Магнитные системы трехфазных трансформаторов

Способы получения 380 Вольт из 220

Рассмотрим основные способы преобразования 220 вольт в полноценный трёхфазный ток, напряжением 380 В:

  • с помощью электронного преобразователя напряжения;
  • путём применения трансформатора;
  • использованием трёх фаз;
  • используя трёхфазный двигатель в качестве генератора;
  • пользуясь конденсаторной схемой.

Преобразователь напряжения

Самый простой и надёжный способ преобразовать 220 В в 380 – купить электронный преобразователь напряжения. (см. рис. 2). Этот прибор часто называют инвертором. Гаджет прост в управлении и генерирует качественный трёхфазный ток. Правда, мощность инверторов не слишком большая, но её, как правило, хватает для большинства трёхфазных бытовых приборов.


Рис. 2. Преобразователь напряжения

Преобразователь хорош ещё и тем, что у него есть встроенная функция защиты от перегрузок и КЗ. А это значит, что электромотор не перегреется и не выйдет из строя в результате КЗ.

Высокое качество тока достигается благодаря принципу работы устройства. Инвертор сначала выпрямляет переменный однофазный ток, а затем генерирует трёхфазное напряжение с заданной частотой и со стандартным сдвигом фаз. При этом количество фаз может быть и больше чем 3 (с соответствующим углом сдвига).

Используя трансформатор

С помощью повышающего трансформатора можно получить какое угодно напряжение, в том числе и 380 В. Однако, если вас интересует трёхфазное напряжение, то необходим специальный трёхфазный трансформатор. преобразующий однофазный ток в трёхфазный. Такие трансформаторы есть в продаже.

Обмотки трансформатора соединены звездой или треугольником. Напряжение однофазной сети подаётся на две первичные обмотки напрямую, а на третью – через конденсатор. При этом ёмкость конденсатора подбирается из расчёта 7 мкФ на каждые 100 Вт мощности.

Обратите внимание на то, что номинальное напряжение конденсатора не должно быть ниже 400 В. Такое устройство нельзя включать без нагрузки.

Хоть мы и получим таким способом необходимые 380 В, всё равно будет наблюдаться снижение мощности электромотора (если вы планируете подключать его к трансформатору). Соответственно КПД двигателя тоже упадёт.

Использование 3-х фаз

Если вы проживаете в многоквартирном доме, то к нему уже подведено 3 фазы, которые с целью оптимального распределения нагрузок разведены по отдельным квартирам. На каждом этаже стоят распределительные щиты, откуда можно завести в квартиру недостающие две фазы. Но для этого потребуется разрешение.

При желании вы можете получить разрешение у энергоснабжающей компании или согласовать с Энергонадзором обустройство трёхфазного питания в вашей квартире. При этом потребуется установить трёхфазный счётчик электроэнергии.

Область применения

Данные устройства предназначены для преобразования эксплуатационных параметров трехфазных электросетей и используются в энергосистемах следующих типов:

  • системы транспортирования и распределения электроэнергии;
  • преобразовательные устройства;
  • электротехнологические установки (сварочная аппаратура, электропечи и т.п.);
  • устройства связи и телемеханики;
  • системы автоматики;
  • бытовая электроаппаратура;
  • электроизмерительные устройства.

Подходящую схему соединения определяют в соответствии с условиями работы прибора, к которым относятся мощность сети, уровень напряжения, асимметричность нагрузки. На выбор схемы соединения влияют также и экономические соображения.

Как переключить обмотки?

Большинство трехфазных электромоторов изготавливаются с открытой схемой – их можно подключить и звездой, и треугольником. Достаточно просто переставить перемычки на распредкоробке БРНА (Блок Распределения (расключения) Начал Обмоток).

Стандартная схема установки перемычек для схем «звезда» и «треугольник» приведена на рисунке ниже.

Но встречаются двигатели, у которых блок распределения имеет всего 3 клеммы. Это означает, что обмотки уже включены по той или иной схеме и их осталось только подключить к сети. К примеру, двигатель, шильдик которого изображен ниже, можно включить только «звездой».

Полезно! При желании и некоторых умениях можно разобрать двигатель, разобраться в обмотках и соединить их по другой схеме. При этом мотор будет отлично работать.

Включение трех фазного тр-ра на одну фазу

UA3UZZ сказал(-а): 04.04.2016 18:00

Определение токов устройства

При определении тока первичной обмотки следует учитывать потери, а также намагничивающий ток трансформатора, относительная величина которых в маломощных силовых трансформаторах весьма значительна. Величины токов могут быть определены по следующей формуле:

Будет интересно➡  Чем отличаются трансформаторы напряжения от трансформаторов тока

Формула определения токов

где U1 и U2 – напряжения обмоток по заданию;

P2 – мощность вторичной обмотки по заданию;

cos φ2 – коэффициент мощности нагрузки по заданию;

η – коэффициент полезного действия (КПД) трансформатора.

Выбор индукции в стержне сердечника и плотности тока в проводах обмоток трансформатора – допустимая величина индукции в стержне и ярме сердечника трансформатора определяется выбранным значением намагничивающего тока, мощностью, частотой, типом трансформатора, числом стыков в сердечнике и материалом последнего.

Можно ознакомиться в статье более подробно об устройстве силовых трансформаторах.

Магнитопровод стержневого типа

Для питания радиоэлектронных устройств обычно применяются трехфазные трансформаторы с общей магнитной системой через ярмо Я для трех фаз с тремя стержнями С, или трехстержневые трансформаторы. Каждая из обмоток трансформатора, как первичная, так и вторичная, может быть соединена: а) звездой; б) треугольником.

При соединении звездой концы обмоток образуют общую точку 0. При соединении треугольником начало первой фазной обмотки соединяется с концом третьей, начало второй — с концом первой и начало третьей — с концом второй. В первом случае все начала, а во втором общие точки обмоток присоединяются к сети.

Следует отметить, что понятия начала и конца обмоток условны, однако они необходимы для правильного соединения фазных обмоток. В трехфазных трансформаторах положительному направлению тока от начала к концу обмотки должно соответствовать определенное направление магнитного потока в стержнях; в стержневых трансформаторах это направление должно быть одинаковым.

Типы соединения звездой и треугольником
Соединение обмоток: а — звездой; б — треугольником.

Начала фазных обмоток высокого напряжения (ВН) принято обозначать прописными (большими) буквами А, В и С, а концы их — буквами X, У и Z, причем для обмоток фазы используются буквы АХ, ВУ и CZ. Начала и концы обмоток низкого напряжения (НН) обозначаются соответственно строчными (малыми) буквами — а, в, с и х, у, г.

Наибольшее распространение имеют соединения обмоток по схеме «звезда» (Y) и «треугольник» (D), причем первичные и вторичные обмотки могут иметь как одинаковые, так и различные схемы. Если при соединении обмоток «звездой» нулевая точка выводится, то такое соединение называют «звезда c нулем» (Yо).

Соединение обмоток «звездой»

Самым простым и дешевым из них является соединение обеих обмоток трансформатора звездой (Y/Y), при котором каждая из обмоток и ее изоляция (при глухом заземлении нейтральной точки) должны быть рассчитаны только на фазное напряжение и линейный ток.

Тип соединения Звезда
Соединение обмоток трансформатора звездой.

Так как число витков обмотки трансформатора прямо пропорционально напряжению, то, следовательно, соединение обмоток звездой требует в каждой из обмоток меньшего количества витков, но большего сечения проводников с изоляцией, рассчитанной лишь на фазное напряжение.

У трехфазного трансформатора соединяют обмотки звездой (Y/Y). Такое соединение широко применяют для трансформаторов небольшой и средней мощности (примерно до 1800 кВ-А). Соединение звездой является наиболее желательным для высокого напряжения, так как при нем изоляция обмоток рассчитывается лишь на фазное напряжение. Чем выше напряжение и меньше ток, тем относительно дороже обходится соединение обмоток треугольником.

Где применяют обмотку треугольником

Соединение обмоток треугольником конструктивно удобнее при больших токах. По этой причине соединение Y/D широко применяется для трансформаторов большой мощности в тех случаях, когда на стороне низшего напряжения не требуется нейтрального провода.

При трехфазной трансформации только отношение фазных напряжений U1ф/U2ф всегда приближенно равно отношению чисел витков первичной и вторичной обмоток w1/w2; что же касается линейных напряжений, то их отношение зависит от способа соединения обмоток трансформатора.

Тип соединения Треугольник
Соединение обмоток трансформатора треугольником.

При одинаковом способе соединения (Y/Y или D/D) отношение линейных напряжений также равно коэффициенту трансформации. Однако при различном способе соединения (Y/D или D/Y) отношение линейных напряжений меньше или больше этого коэффициента в √3 раз. Это дает возможность регулировать вторичное линейное напряжение трансформатора соответствующим изменением способа соединения его обмоток.

Устройство и схема трехфазного трансформатора
На значения рабочих характеристик трансформаторов влияют потери энергии при нагреве обмоток в совокупности с другими внешними и внутренними факторами, значительно усложняющими связь формы вторичного напряжения от аналогичных параметров первичной цепи.

Источники

  • https://StrojDvor.ru/elektrosnabzhenie/konstrukciya-i-princip-dejstviya-trexfaznyx-transformatorov/
  • https://opori-osveshenia.ru/osveshchenie/soedinenie-transformatorov.html
  • https://ElectrikBlog.ru/podklyuchenie-trehfaznogo-dvigatelya-k-odnofaznoj-seti-3-shemy-kondensatornogo-zapuska/
  • https://PermjEnergosbyt-lk.ru/osveshchenie/trehfaznyj-transformator-v-odnofaznoj-seti.html
  • https://my-class.ru/kak-podklyuchit-trekhfaznyy-transformator-380-na-220/
  • https://siblimo.ru/kak-podklyuchit-trekhfaznyy-transformator-v-odnofaznuyu-set/
  • https://ElectroInfo.net/transformatory/ustrojstvo-i-shema-trehfaznogo-transformatora.html
  • https://tksilver.ru/kak-podklyuchit/kak-podklyuchit-trehfaznyj-transformator-v-odnofaznuyu-set.html

[свернуть]