Способы передачи электрической энергии на большие расстояния

История

Первые генераторы строили рядом с потребителями энергии. Они были маломощными и предназначались только для электроснабжения отдельного здания или городского квартала. Но затем пришли к выводу, что гораздо выгоднее возводить крупные станции в районах концентрации ресурсов. Это мощные ГЭС – на реках, крупные ТЭС – рядом с угольными бассейнами. Для этого нужна передача электроэнергии на расстояние.

Начальные попытки построить передающие линии столкнулись с тем, что при соединении генератора с приемниками электроэнергии длинным кабелем мощность к концу передающей линии сильно снижалась из-за огромных потерь на нагрев. Необходимо было использовать кабели с большей площадью сечения, что делало их значительно более дорогими, или повышать напряжение, чтобы уменьшить силу тока.

После опытов с передачей постоянного и однофазного переменного тока с помощью линий повышенного напряжения потери оставались слишком высокими – на уровне 75%. И только когда Доливо-Добровольский разработал систему трехфазного тока, был сделан прорыв в передаче электроэнергии: добились снижения потерь до 20%.

Важно! Сейчас подавляющее большинство линий электропередачи использует трехфазный переменный ток, хотя идет развитие и ЛЭП на постоянном токе.

Микроволны

Микроволны — специальные линии, имеющие длину в 12 сантиметров и частоту в 2,45 гигагерц, которые прозрачны для атмосферы. Вне зависимости от погоды, потеря энергии будет равна 5%. Вначале необходимо преобразование электротока в микроволны, потом их обнаруживание и возвращение в первое состояние. Первая проблема была решена благодаря постановке магнетрона, а вторая — благодаря ректенны или специальной антенны.

Вам это будет интересно  Особенности электрических мощностей
Микроволновая передача энергии

Схема передачи электроэнергии

Расстояние до токоведущих частей находящихся под напряжением

Читайте также:  Что такое сила тяги и по какой формуле её находить ?

В цепи от производства энергии до получения ее потребителями существует несколько звеньев:

  • генератор на электростанции, вырабатывающий электроэнергию напряжением 6,3-24 кВ (есть отдельные агрегаты с большим номинальным напряжением);
  • повышающие подстанции (ПС);
  • сверхдальние и магистральные ЛЭП напряжением 220-1150 кВ;
  • крупные узловые ПС, понижающие напряжение до 110 кВ;
  • ЛЭП 35-110 кВ для передачи электрической энергии на питающие центры;
  • дополнительные понижающие подстанции – питающие центры, где получают напряжение 6-10 кВ;
  • распределительные ЛЭП 6-10 кВ;
  • трансформаторные пункты (ТП), ЦРП, находящиеся рядом с потребителями, для понижения напряжения до 0,4 кВ;
  • низковольтные линии для подведения к домам и другим объектам.

Упрощенная схема передачи электроэнергии
Упрощенная схема передачи электроэнергии

Реальные проекты в наши дни

За все последние годы, согласно вышеприведенным технологиям, ученые пытались и пытаются реализовать всего два проекта.

Первый из них начинался очень обнадеживающе. В 2000-х годах на о.Реюньон, возникла потребность в постоянной передаче 10кВт мощности на расстояние в 1км.







Горный рельеф и местная растительность, не позволяли проложить там ни воздушные линии электропередач, ни кабельные.

Все перемещения на острове в эту точку осуществлялось исключительно на вертолетах.

Для решения проблемы в одну команду были собраны лучшие умы из разных стран. В том числе и ранее упоминавшиеся в статье, наши ученые из МГУ В.Ванке и В.Савин.

Однако в момент, когда должны были приступать к практической реализации и строительству передатчиков и приемников энергии, проект заморозили и остановили. А с началом кризиса в 2008 году и вовсе забросили.

На самом деле это очень обидно, так как теоретическая работа там была проделана колоссальная и достойная реализации.

Второй проект, выглядит более безумным чем первый. Однако на него выделяются реальные средства. Сама идея была высказана еще в 1968г физиком из США П.Глэйзером.

Он предложил на тот момент не совсем нормальную идею — вывести на геостационарную орбиту в 36000 км над землей огромный спутник. На нем расположить солнечные панели, которые будут собирать бесплатную энергию солнца.

Затем все это должно преобразовываться в пучок СВЧ волн и передаваться на землю.

Этакая «звезда смерти» в наших земных реалиях.

На земле пучок нужно поймать гигантскими антеннами и преобразовать в электричество.

Насколько огромны должны быть эти антенны? Представьте, что если спутник будет в диаметре 1км, то на земле приемник должен быть в 5 раз больше — 5км (размер Садового кольца).

Но размеры это всего лишь малая часть проблем. После всех расчетов оказалось, что такой спутник вырабатывал бы электричество мощностью в 5ГВт. При достижении земли оставалось бы всего 2ГВт. К примеру Красноярская ГЭС дает 6ГВт.

Поэтому его идею рассмотрели, посчитали и отложили в сторонку, так как все изначально упиралось в цену. Стоимость космического проекта в те времена вылезла за 1трлн.$.

Но наука к счастью не стоит на месте. Технологии совершенствуются и дешевеют. Сейчас разработку такой солнечной космической станции уже ведут несколько стран. Хотя в начале двадцатого века для беспроводной передачи электроэнергии хватало всего одного гениального человека.

Советуем изучить Дезинфекционное освещение для обеззараживания и лечения заболеваний

Общая цена проекта упала от изначальной до 25млрд.$. Остается вопрос — увидим ли мы в ближайшее время его реализацию?

К сожалению никто вам четкого ответа не даст. Ставки делают только на вторую половину нынешнего столетия. Поэтому пока давайте довольствоваться беспроводными зарядками для смартфонов и надеяться что ученым удастся повысить их КПД. Ну или в конце концов на Земле родится второй Никола Тесла.

Основные технологические процессы в электроэнергетике

Нормативы потребления электроэнергии на человека без счетчика

Производство электроэнергии в России базируется на трёх китах энергетической системы. Это атомная, тепловая и гидроэнергетика.

Три вида генерирования электричества

Электростанция Топливо Генерация
ТЭС Уголь, мазут Получение пара от сгорания топлива, который движет турбины генераторов
ГЭС Потенциальная энергия потока воды Движение турбин под напором воды
АЭС Урановые сердечники Получение пара от тепла ядерной реакции. Энергия пара движет генераторные паротурбины

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Демонстрация метода электромагнитной индукции

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт.

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

Трансформаторы. Передача электрической энергии

Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы. Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции. Простейший трансформатор состоит из сердечника замкнутой формы из магнитомягкого материала, на который намотаны две обмотки: первичная и вторичная (рис. 2.5.1).

Рисунок 2.5.1.

Простейший трансформатор и его условное изображение в схемах. n1 и n2 – числа витков в обмотках

Первичная обмотка подсоединяется к источнику переменного тока с ЭДС e1 (t), поэтому в ней возникает ток J1 (t), создающий в сердечнике трансформатора переменный магнитный поток Φ, который практически без рассеивания циркулирует по замкнутому магнитному сердечнику и, следовательно, пронизывает все витки первичной и вторичной обмоток. В режиме холостого хода, то есть при разомкнутой цепи вторичной обмотки, ток в первичной обмотке весьма мал из-за большого индуктивного сопротивления обмотки. В этом режиме трансформатор потребляет небольшую мощность.

Ситуация резко изменяется, когда в цепь вторичной обмотки включается сопротивление нагрузки Rн, и в ней возникает переменный ток J2 (t). Теперь полный магнитный поток Φ в сердечнике создается обоими токами. Но согласно правилу Ленца магнитный поток Φ2, создаваемый индуцированным во вторичной обмотке током J2, направлен навстречу потоку Φ1, создаваемому током J1 в первичной обмотке: Φ = Φ1 – Φ2. Отсюда следует, что токи J1 и J2 изменяются в противофазе, то есть имеют фазовый сдвиг, равный 180°.

Другой важный вывод состоит в том, что ток J1 в первичной обмотке в режиме нагрузки значительно больше тока холостого хода. Это следует из того, что полный магнитный поток Φ в сердечнике в режиме нагрузки должен быть таким же, как и в режиме холостого хода, так как напряжение u1 на первичной обмотке в обоих случаях одно и то же. Это напряжение равно ЭДС источника e1 переменного тока. Так как магнитные потоки, пронизывающие обмотки, пропорциональны числу n1 и n2 витков в них, можно записать для первичной обмотки:

для вторичной обмотки:

Следовательно,

Знак минус означает, что напряжения u1 и u2 находятся в противофазе, также как и токи J1 и J2 в обмотках. Поэтому фазовый сдвиг φ1 между напряжением u1 и током J1 в первичной обмотке равен фазовому сдвигу φ2 между напряжением u2 и током J2 во вторичной обмотке. Если нагрузкой вторичной обмотки является активное сопротивление Rн, то φ1 = φ2 = 0.

Для амплитудных значений напряжений на обмотках можно записать:

Коэффициент K = n2 / n1 есть коэффициент трансформации. При K > 1 трансформатор называется повышающим, при K <� 1 – понижающим.

Приведенные выше соотношения, строго говоря, применимы только к идеальному трансформатору, в котором нет рассеяния магнитного потока и отсутствуют потери энергии на джоулево тепло. Эти потери могут быть связаны с наличием активного сопротивления самих обмоток и возникновением индукционных токов (токов Фуко) в сердечнике. Для уменьшения токов Фуко сердечники транформатора изготавливают обычно из тонких стальных листов, изолированных друг от друга. Существует еще один механизм потерь энергии, связанный с гистерезисными явлениями в сердечнике. При циклическом перемагничивании ферромагнитных материалов возникают потери электромагнитной энергии, прямо пропорциональные площади петли гистерезиса.

У хороших современных трансформаторов потери энергии при нагрузках, близких к номинальным, не превышает 1–2 %, поэтому к ним приближенно применима теория идеального трансформатора.

Если пренебречь потерями энергии, то мощность P1, потребляемая идеальным трансформатором от источника переменного тока, равна мощности P2, передаваемой нагрузке.

Отсюда следует, что

то есть токи в обмотках обратно пропорциональны числу витков.

Принимая во внимание, что U2 = RнI2, можно получить следующее соотношение

Отношение Rэкв = U1 / I1 можно рассматривать как эквивалентное активное сопротивление первичной цепи, когда вторичная обмотка нагружена на сопротивление Rн. Таким образом, трансформатор «трансформирует» не только напряжения и токи, но и сопротивления.

В современной технике нашли широкое применение трансформаторы различных конструкций. В радиотехнических устройствах используются небольшие, маломощные трансформаторы, имеющие обычно несколько обмоток (понижающих или повышающих напряжение источника переменного тока). В электротехнике часто применяются так называемые трехфазные трансформаторы, предназначенные для одновременного повышения или понижения трех напряжений, сдвинутых по фазе относительно друг друга на углы 120°.

Мощные трехфазные трансформаторы используются в линиях передач электроэнергии на большие расстояния.

Передача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой.

Для уменьшения потерь на нагревание проводов необходимо уменьшить силу тока в линии передачи, и, следовательно, увеличить напряжение. Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется трехфазный ток частотой 50 Гц. Чем выше напряжение на линии, тем меньше потери энергии при передаче. Самое высокое напряжение используемое в России – 1000 кВ, в мире на сегодняшний день самое высокое напряжение 1200 кВ. На рис. 2.5.2 представлена схема линии передачи электроэнергии от электростанции до потребителя. Схема дает представление об использовании трансформаторов при передаче электроэнергии.

Следует отметить, что при повышении напряжения в линиях передач увеличиваются утечки энергии через воздух. В сырую погоду вблизи проводов линии может возникнуть так называемый коронный разряд, который можно обнаружить по характерному потрескиванию. Коэффициент полезного действия линий передач не превышает 90 %.

Рисунок 2.5.2.

Условная схема высоковольтной линии передачи. Трансформаторы изменяют напряжение в нескольких точках линии. На схеме изображен только один из трех проводов высоковольтной линии

Беспроводная передача электроэнергии, первые опыты

В 1888 году Генрих Герц экспериментально подтвердил существование электромагнитных волн, предсказанных Максвеллом. Его искровой передатчик с прерывателем на основе катушки Румкорфа мог производить электромагнитные волны частотой до 0,5 гигагерц. Которые могли быть приняты несколькими приемниками, настроенными в резонанс с передатчиком.

10-и. Передача электроэнергии на расстояние

  • Главная
  • Справочник
  • Физика
  • Книги, лекции и конспекты по физике
  • Физика 8 класс
  • Электромагнитные явления
  • 10-и. Передача электроэнергии на расстояние

§ 10-и. Передача электроэнергии на расстояние

Известно, что крупные теплоэлектростанции строят вблизи угольных месторождений или крупных газопроводов, гидроэлектростанции возводят на крупных реках, а атомные электростанции – не ближе 30–50 км от больших городов, где расположены основные потребители электроэнергии. Другими словами, электроэнергия производится вдали от мест её потребления.

Следовательно, она должна быть передана к местам её потребления, для чего служат линии электропередачи (ЛЭП).

А знаете ли вы, что при типичной мощности генератора электростанции 500 МВт и напряжении 10 кВ сила тока в проводах составляет 50 тысяч ампер? Такой ток, согласно закону Джоуля-Ленца, при сопротивлении линии электропередачи всего 1 Ом ежесекундно будет выделять столько же теплоты, сколько миллион электрочайников, включённых одновременно!

По закону Джоуля-Ленца Q = I2Rt

существуют две возможности для снижения потерь электроэнергии: уменьшить сопротивление линии электропередачи (
R
) или уменьшить в ней силу тока (
I
).

Рассмотрим первую возможность. Для уменьшения сопротивления нужно либо уменьшить длину проводов (и энергия не дойдёт до потребителя), либо увеличить их толщину (и тогда они станут тяжёлыми и могут обломить опоры). Как видите, первая возможность невыполнима на практике.

Рассмотрим теперь вторую возможность. При изучении трансформатора (см. § 10-з) мы отметили, что трансформатор повышает напряжение, одновременно понижая силу тока в такое же число раз.

Поэтому, прежде чем ток от генератора попадает в линию электропередачи, он трансформируется (преобразовывается) в ток высокого напряжения. Повысив напряжение с 10 кВ до 1000 кВ, то есть в 100 раз, мы в такое же число раз понизим силу тока. Согласно закону Джоуля-Ленца, количество теплоты, бесполезно выделяющейся в проводах, уменьшится в 100·100 раз, то есть сразу в 10 000 раз.

На рисунке на предыдущей странице показано, что электроэнергия, выработанная генератором 1, по толстым проводам 2 поступает на трансформатор 3. После повышения напряжения ток передаётся потребителям по сравнительно тонким проводам 4. Для этого используют специальные прочные опоры 5 с гирляндами изоляторов 6.

Когда электроэнергия доходит по проводам 4 до места потребления, применяют понижающий трансформатор 7, от которого энергия поступает к потребителям 9. Энергия может поступать и к другим трансформаторам, понижающим напряжение ещё сильнее.

Как правило, энергия, подающаяся в город по высоковольтной линии, проходит через три-четыре понижающих трансформатора. Они понижают напряжение каскадно, чтобы получались различные напряжения, необходимые как промышленным, так и бытовым потребителям. Это условно показано на схеме.

Электромагнитные явленияФормулы Физика Теория 8 класс

Источник

Источник информации

Больше интересного в телеграм @calcsbox

Какие проблемы возникают при передаче электроэнергии на большие расстояния?

1) При передаче на большие расстояния возникают существенные потери энергии в виде тепла. 2) Превращать кинетическую энергию падающей воды в электрическую.

Постоянный ток в качестве альтернативы

Большинство из используемых сегодня в мире линий электропередач работает на переменном токе. Однако имеются исключения. В некоторых случаях применение постоянного тока оказывается более эффективным:

  • отпадает необходимость в синхронизации генераторов, работающих в разных энергосистемах;
  • сводятся к нулю потери на ёмкостное и индуктивное сопротивления кабеля;
  • снижается стоимость линии, т.к. для передачи постоянного тока достаточно всего 2 проводников;
  • возможность использования на уже построенных ЛЭП переменного тока, т.е. не нужно возводить новые магистрали;
  • снижение электромагнитного излучения, возникающего при смене направления тока.

Дополнительная информация. Большинство домашних электроприборов может работать от постоянного тока. К ним относятся лампочки, интернет роутеры, дрели, обогреватели и многое другое. Переменный ток необходим только для некоторых видов двигателей, которые в быту встречаются крайне редко.

Умение передавать электрический ток на огромные расстояния послужило решающим фактором для развития всего человечества. Однако индустрия не стоит на месте, поэтому сейчас учёные работают над тем, чтобы сделать транспортировку энергии ещё эффективнее и дешевле.

В чем состоят преимущества передачи электроэнергии на большие расстояния с помощью постоянного тока?

Передача электроэнергии между конечными точками, отстоящими на большие расстояния друг от друга, без использования промежуточного оборудования, например, поставка энергии в отдаленные районы. … Высоковольтные линии постоянного тока могут передавать больше энергии при заданном диаметре проводника.

Схемы распределения

ЛЭП бывают воздушными, кабельными и кабельно-воздушными. Для увеличения надежности электрическая мощность в большинстве случаев передается несколькими путями. То есть на шины подстанции подводятся две и более линий.

Существует две схемы распределения электроэнергии 6-10 кВ:

  1. Магистральная, когда линия 6-10 кВ является общей для питания нескольких ТП, которые могут быть расположены на всем ее протяжении. Если при этом магистральная ЛЭП получает питание от двух разных фидеров с обеих сторон, такая схема называется кольцевой. При этом в нормальном режиме работы она питается от одного фидера и отключена от другого коммутационными аппаратами (выключателями, разъединителями);

Магистральная схема с двухсторонним питанием
Магистральная схема с двухсторонним питанием

Читайте также:  Выпрямители: разновидности, схемы, формулы и функции расчета

  1. Радиальная. В этой схеме вся мощность сосредоточена в конце ЛЭП, которая предназначена для электроснабжения единственного потребителя.

Для линий напряжением 35 кВ и выше используют схемы:

  1. Радиальная. Мощность на ПС приходит по одноцепной или двухцепной питающей линии от одной узловой подстанции. Самая экономически выгодная схема – с одной линией, но очень ненадежная. Благодаря двухцепным ЛЭП, создается резервное питание;
  2. Кольцевая. Шины ПС запитываются не менее, чем двумя ЛЭП от независимых источников. При этом на питающих линиях могут существовать ответвления (отпайки), отходящие на другие ПС. Общее число отпаечных ПС должно быть не больше трех для одной ЛЭП.

Важно! Кольцевую сеть питают не меньше двух узловых подстанций, размещенных, как правило, на значительном расстоянии друг от друга.

Трансформаторные подстанции

Как передается электроэнергия без проводов на расстояние

Трансформаторные подстанции наряду с ЛЭП – основная составная часть энергосистемы. Они делятся на:

  1. Повышающие. Находятся вблизи электростанций. Основное оборудование – силовые трансформаторы, повышающие напряжение;
  2. Понижающие. Расположены на других участках электросети, находящихся ближе к потребителям. Содержат понижающие трансформаторы.

Существуют еще преобразовательные ПС, но они не относятся к трансформаторным. Служат для преобразования переменного тока в постоянный, а также получения тока другой частоты.

Основное оборудование трансформаторных ПС:

  1. Распредустройство высокого и низкого напряжения. Оно может быть открытого типа (ОРУ), закрытого типа (ЗРУ) и комплектное (КРУ);
  2. Силовые трансформаторы;
  3. Щит управления, релейный зал, где сосредоточена аппаратура защит и автоматического управления коммутационными аппаратами, сигнализация, измерительные приборы и счетчики электроэнергии. Два последних вида оборудования, как и некоторые виды защит, могут присутствовать и в КРУ;

Щит управления подстанцией
Щит управления подстанцией

  1. Аппаратура собственных нужд ПС, куда входят трансформаторы собственных нужд (ТСН), понижающие напряжение с 6-10 до 0,4 кВ, шины СН 0,4 кВ с коммутационными аппаратами, батарея аккумуляторов, устройства подзаряда. От СН питаются защиты, освещение ПС, отопление, двигатели обдува трансформаторов (охлаждение) и т. д. На тяговых железнодорожных ПС трансформаторы собственных нужд могут иметь первичное напряжение 27,5 или 35 кВ;
  2. В распредустройствах находятся коммутационные аппараты трансформаторов, питающих и отходящих линий и фидеров 6-10 кВ: разъединители, выключатели (вакуумные, элегазовые, масляные, воздушные). Для питания цепей защит и измерений применяются трансформаторы напряжения (ТН) и тока (ТТ);
  3. Оборудование для защиты от перенапряжений: разрядники, ОПН (ограничители перенапряжений);
  4. Токоограничивающие и дугогасительные реакторы, батареи конденсаторов и синхронные компенсаторы.

Последнее звено понижающих подстанций – трансформаторные пункты (ТП, КТП-комплектные, МТП-мачтовые). Это небольшие устройства, содержащие 1, 2, реже 3 трансформатора, понижающие напряжение иногда с 35, чаще с 6-10 кВ до 0,4 кВ. Со стороны низкого напряжения установлены автоматы. От них отходят линии, непосредственно распределяющие электрическую энергию реальным потребителям.

Комплектная трансформаторная подстанция
Комплектная трансформаторная подстанция








Маршрут транспортировки электричества

Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.

Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).

Почему электроэнергия передается при повышенном напряжении? Все очень просто. Вспомним формулу электрической мощности — P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач — тем меньше ток в проводах, при той же потребляемой мощности. Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство — чем тоньше провода, тем они дешевле.

Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.

Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП. К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно. Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.

От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д

Читайте также:  Как решать электрические цепи с источником тока

Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт)

Советуем изучить Преобразователь частоты

Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.

Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.

Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:

Более подробно об этом вопросе рассказывают эксперты:

Как электричество поступает от источника к потребителю









Способы электропередачи на дальние расстояния

Осуществление передачи электрической энергии можно сделать при помощи прямой передачи и преобразования электричества в другую энергию. В первом случае электричество идет по проводниковым элементам, а именно проводу или токопроводящей среде. В воздушной или кабельной линии используется данный метод электропередачи.

Вам это будет интересно  Как заряжается конденсатор

Обратите внимание! Благодаря преобразованию энергии в другую энергию открывается беспроводной способ снабжения потребителей. Из-за этого пользователи могут отказаться от электрической передачи и избавиться от монтажа и обслуживания.

Стоит также указать, что передается электроэнергия благодаря индуктивной, резонансной индуктивной, емкостной, магнитодинамической связи, свч-излучению и оптическому излучению. При этом переносчиком всех этих способов является магнитное и электрическое поле, а также видимый свет с инфракрасным излучением и ультрафиолетовым излучением.


Способы электропередачи

Постоянный ток

Вторым способом передачи электрического тока потребителю, является постоянный ток. Подобный ток является выпрямленным. Он встречается в аккумуляторах, батарейках, зарядных устройствах. Такой ток и сейчас подается потребителям некоторых стран, но в очень малых количествах. Его вырабатывают солнечные батареи. Постоянный ток можно подавать по действующим ЛЭП и подземным кабелям. Плюсы такой передачи, следующие:

  1. С расстоянием нет потери мощности. Не придется завышать напряжение на электростанции.
  2. Статическая устойчивость не оказывает влияния на передачу и распределение.
  3. Не требуется настраивать частотную синхронизацию.
  4. Напряжение можно передать всего по одной линии с одним контактным проводом.
  5. Нет влияния электромагнитного излучения.
  6. Минимальная реактивная мощность.

Постоянный ток для потребителя не подается только по причине огромной себестоимости оборудования для электростанций.

Проводимость электрического тока и процент завышения в начале передачи, во многом зависят от сопротивления самой ЛЭП. Снизить сопротивление, — а тем самым нагрузку — можно при помощи охлаждения до сверхнизкой температуры. Это помогло бы увеличить расстояние для передачи энергии и существенно снизить потери. Сегодня нет технологии занижения температуры линии электропередачи. Такая технология является крайне дорогой и требует больших изменений в конструкции. Но в регионах крайнего севера этот способ вполне работает и намного занижает процент передачи мощностей и потери от расстояния.

Пропускная способность линий электропередачи

Беспроводная передача энергии

При передаче электрической энергии основным показателем является пропускная способность ЛЭП. Она характеризуется значением активной мощности, передаваемой по линии в нормальных рабочих условиях. Пропускная способность находится в зависимости от напряжения ЛЭП, ее протяженности, размеров сечения, вида линии (КЛ или ВЛ). При этом натуральная мощность, не зависящая от длины ЛЭП, – это активная мощность, которая передается по линии при полной компенсации реактивной составляющей. Практически таких условий достичь невозможно.

Важно! Максимальная передаваемая мощность для ЛЭП напряжением от 110 кВ и ниже ограничивается только нагревом проводов. На линиях более высокого напряжения учитывается еще статическая устойчивость энергосистемы.

Некоторые значения пропускной способности ВЛ при КПД = 0,9:

  • 110 кВ: натуральная мощность – 30 мВт, максимальная – 50 мВт;
  • 220 кВ: натуральная мощность – 120-135 мВт, максимальная – 350 мВт по устойчивости и 280 мВт по нагреву;
  • 500 кВ: натуральная мощность – 900 мВт, максимальная – 1350 мВт по устойчивости и 1740 мВт по нагреву.

Можно ли передавать электричество без проводов?

Передача электроэнергии без проводов, это способ передачи электрической энергии без использования токопроводящих элементов в электрической цепи. … Активно изучалась беспроводная передача энергии и в начале 20го века, когда ученые уделяли большое внимание поиску различных путей беспроводной передачи энергии.

Схема передачи энергии от электростанции до потребителя

Главная электростанция вырабатывает напряжение порядка 10-12 кВ. Затем оно повышается с помощью трансформатора до более высокого уровня: 35, 110, 220, 400, 500 или 1150 кВ. После по кабельной или воздушной линии энергия передаётся на расстояния от единиц до тысяч километров и попадает на понижающую подстанцию. На ней также установлен трансформатор, который преобразует сотни киловольт снова в 10-12 тысяч вольт. Далее следует ещё один каскад понижения до 380/220 В. Это напряжение является конечным и раздаётся по потребителям, т.е. жилым домам, больницам и т.д.

ЛЭП

Тут стоит рассказать о том, какие сети используются для передачи электроэнергии. От электростанции до конечного потребителя электричество проходит не только через повышающий трансформатор и высоковольтные линии. Если посмотреть на современный город с высоты, можно заметить целый клубок проводов, образующий единую сеть.

Чтобы попасть к потребителю, с высоковольтных линий ток заново поступает в трансформатор, но на этот раз напряжение понижается. После чего он подается на распределительную сеть и расходится на промышленные предприятия, которые имеют свою подстанцию для получения нужного им напряжения, на городские подстанции, которые расформировывают электричество по магистральным кабелям и на районные подстанции.

Вам это будет интересно Токовые клещи


Городская подстанция

От районных подстанций через линии электропередач электричество подается в частные, многоквартирные дома и объекты инфраструктуры. В спальных микрорайонах кабеля от подстанций в основном прокладывают под землей, откуда они выходят уже на щиток подъезда, который дальше распределяет ток на каждую розетку и лампочку в доме.


Силовой ящик многоэтажки


Схемы передачи электроэнергии к потребителям при использовании ЛЭП с переменным (А) и постоянным (В) током

Наглядный пример структурной схемы электроснабжения

Пример наиболее распространенных конфигураций ЛЭП
Пункт управления передачей электроэнергии
Технологии беспроводной передачи электричества

Потери электроэнергии

Не вся электроэнергия, выработанная на электростанции, доходит до потребителя. Потери электроэнергии могут быть:

  1. Технические. Вызываются потерями в проводах, трансформаторах и другом оборудовании на нагрев и из-за других физических процессов;
  2. Несовершенство системы учета на энергопредприятиях;
  3. Коммерческие. Происходят из-за отбора мощности, помимо приборов учета, разницы фактически потребленной мощности и учтенной счетчиком и т. д.

Технологии передачи электроэнергии не стоят на месте. Развивается использование сверхпроводящих кабелей, позволяющих свести потери практически к нулю. Беспроводная передача электроэнергии – уже не фантастика для подзарядки мобильных устройств. А в Южной Корее работают над созданием беспроводной системы передачи энергии для электрифицированного транспорта.

Как работает электрическая сеть?

Переменный электрический ток передаётся по трём проводам таким образом, что фаза переменного тока в каждом из них смещена относительно других на 120°. … Электрические сети осуществляют передачу, распределение и преобразование электроэнергии в соответствии с возможностями источников и требованиями потребителей.

Высокое напряжение как способ уменьшения потерь

Реальность такова, что передача электроэнергии на большие расстояния неизбежно сопровождается её потерями. Существенная часть электричества, проходя путь от генератора на электростанции до розетки бытового потребителя, превращается в тепло и расходуется на обогрев атмосферы. Однако это не снижает затрат за производство электроэнергии, поэтому конечному пользователю всё же приходится оплачивать и эти нецелевые расходы.

Уменьшить ненужные потери, соответственно, траты, позволяют следующие способы:

  • применение высокотемпературных сверхпроводников;
  • увеличение сечения кабелей и проводов ЛЭП;
  • повышение напряжения в линиях передачи.

За первым способом будущее. Однако сегодня он технически неосуществим. От второго отказались на первых парах развития электроэнергетики, ведь он экономически нецелесообразен из-за лишних расходов на утолщение проводников. Применение высокого напряжения оказалось наиболее удачным методом, поэтому он используется по всему миру уже порядка ста лет.

Как называется лэп которая используется при передаче электроэнергии на большие расстояния?

Основным преимуществом высоковольтных ЛЭП постоянного тока является возможность передавать большие объёмы электроэнергии на большие расстояния с меньшими потерями, чем у ЛЭП переменного тока.

Читайте также  Как рассчитать КВТ ч?

Источники

  • https://RemmachSerp.ru/teoriya-elektro/na-kakoe-rasstoyanie-mozhno-peredavat-elektroenergiyu.html
  • https://rusenergetics.ru/polezno-znat/peredacha-elektroenergii-na-rasstoyanie
  • https://rem-master-pro.ru/teoriya-i-sovety/peredacha-elektroenergii-na-bolshie-rasstoyaniya.html
  • https://knigaelektrika.ru/teoriya/peredacha-elektroenergii-populyarnye-sposoby-i-alternativnye-varianty.html
  • https://BurForum.ru/teoriya-i-opyt/pochemu-elektroenergiyu-peredayut-pod-vysokim-napryazheniem.html
  • https://kmd-mk.ru/kak-osuschestvlyaetsya-peredacha-energii-na-bolshie-rasstoyaniya/
  • https://amperof.ru/elektroenergia/peredacha-elektroenergii-na-rasstoyanie.html
  • https://ProFazu.ru/elektrosnabzhenie/elektroset/peredacha-elektroenergii.html

[свернуть]