Что такое реостат: устройство и принцип работы

Назначение реостатов

По своему назначению реостаты делятся на следующие виды:

  • пусковые, служащие для снижения пускового тока при запуске электродвигателя;
  • пускорегулирующие, использующиеся преимущественно в двигателях постоянного тока, а также при переменном напряжении в случае асинхронного электродвигателя с фазным ротором;
  • нагрузочные, создающие сопротивление в электрической цепи;
  • балластные, необходимые для поглощения излишков энергии, возникающей например при торможении электродвигателя.

Реостаты применяются и для ограничения тока в обмотке возбуждения электрических машин постоянного тока. Благодаря этому получается добиться снижения скачков электрического тока и динамических перегрузок, способных повредить как сам привод, так и подключенный к нему механизм. Применение сопротивления при пуске продлевает срок службы щеток и коллектора.


Внешний вид ползункового реостата с защитным кожухом

Особым видом реостатов является потенциометр. Это делитель напряжения, в основании которого лежит переменный резистор. Благодаря ему в электронных схемах можно использовать различные напряжения, не используя дополнительные трансформаторы или блоки питания. Регулировка силы тока при помощи реостата широко используется в радиотехнике, например, для изменения громкости звучания динамика.

Читайте также:  Измерение силы тока: обзор измерительных приборов и краткое руководство к их применению
Виды и устройство реостатов



Для регулирования силы тока в цепи применяют что

Эрнест Резерфорд занимался исследованиями в основном в области физики и однажды заявил, что «все науки можно разделить на две группы — на физику и коллекционирование марок». Однако Нобелевскую премию ему вручили по химии, что стало неожиданностью как для него, так и для других учёных. Впоследствии он замечал, что из всех превращений, которые ему удалось наблюдать, «самым неожиданным стало собственное превращение из физика в химика».

Принцип действия

Принцип действия всех реостатов схож. Наиболее простую конструкцию и визуально понятный принцип действия имеет ползунковый реостат. Подключение в цепь его происходит через нижнюю и верхнюю клеммы. Конструкция выполнена таким образом, что ток проходит не поперек витков, а через всю длину провода, выбранную ползунком. Это происходит благодаря надежной изоляции между проводниками.

Положения ползунка

В большинстве положений бегунка задействована лишь часть реостата. При этом изменение длины проводника приводит к регулированию силы тока в цепи. Для уменьшения износа витков ползунок имеет скользящий контакт, часто выполняемый из графитного стержня либо колесика.


Устройство ползункового реостата

Реостат имеет возможность работать в режиме потенциометра. Для этого, выполняя подключение, необходимо задействовать все три клеммы. Две нижние используются в качестве входа. Они подключаются к источнику напряжения. Верхняя и одна из нижних клемм являются выходом. При перемещении ползунка напряжение межу ними регулируется.


Реостат, используемый в качестве делителя напряжения

Помимо потенциометра возможен и балластный режим работы реостата, когда необходимо создать активную нагрузку для потребления энергии. При этом необходимо учитывать какие рассеивающие способности имеет аппарат. Избыточное тепло может вывести прибор из строя, поэтому рекомендуется производить включение реостата в сеть, предварительно выполнив расчет по рассеиваемой мощности и в случае необходимости обеспечить достаточное охлаждение.



Какое устройство регулирует силу тока в цепи?

Резисторы — элементы, широко используемые в электро- и радиотехнике, автоматике и электронике, и которые ранее называли просто «сопротивлениями» . (Слово «резистор» образовано от латинского слова resisto — сопротивляюсь) . Существует большое разнообразие форм и размеров резисторов в зависимости от назначения и величины рассеиваемой мощности. Типы практически применяемых резисторов: Резисторы классифицируются на постоянные резисторы (сопротивление которых не регулируется) , переменные регулируемые резисторы (потенциометры, реостаты, подстроечные резисторы) и различные специальные резисторы, например: нелинейные (которые, строго говоря, не являются обычными резисторами из-за нелинейности ВАХ) , терморезисторы (с большой зависимостью сопротивления от температуры) , фоторезисторы (сопротивление зависит от освещённости) , тензорезисторы (сопротивление зависит от деформации резистора) , магниторезисторы и пр. Реостаты — приборы, сопротивление которых можно регулировать. Они применяются тогда, когда необходимо регулировать силу тока в цепи. Реостат отличается от переменного резистора своей конструкцией и значительной мощностью.

Реоста́т (потенциометр, переменное сопротивление, переменный резистор, от греч. ρηος — поток и греч. στατος — стоящий) — электрический аппарат, служащий для регулировки и получения требуемой величины сопротивления. Как правило, состоит из проводящего элемента с устройством регулирования электрического сопротивления. Изменение сопротивления может осуществляться как плавно, так и ступенчато.

Изменением сопротивления цепи, в которую включен реостат, возможно достичь изменения величины тока или напряжения. При необходимости изменения тока или напряжения в небольших пределах реостат включают в цепь последовательно. Для получения значений тока и напряжения от нуля до максимального значения применяется потенциометрическое включение реостата, являющего в данном случае регулируемым делителем напряжения.

Использование реостата возможно как в качестве электроизмерительного прибора, так и прибора в составе электрической или электронной схемы.

[править] Основные типы реостатов Проволочный реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, натянутой на раму. Проволока проходит через несколько контактов. Соединяя с нужным контактом, можно получить нужное сопротивление. Ползунковый реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, виток к витку натянутой на стержень из изолирующего материала. Проволока покрыта слоем окалины, который специально получается при производстве. При перемещении ползунка с подсоединённым к нему контактом слой окалины соскабливается, и электричество идёт из проволоки на ползунок. Чем больше витков от одого контакта до другого, тем больше сопротивление. Такие реостаты применяются в учебном процессе.

Источник

Материалы изготовления

Что такое измерение сопротивления изоляции и почему это важно

Реостаты по виду материала изготовления делятся на 4 типа. Это угольные, металлические, жидкостные и керамические РС:

  1. К угольным устройствам относятся модели, где переменным сопротивлением выступает графитовый стержень.
  2. Металлическим примером исполнения могут быть ползунковые реостаты. У них переменный резистор – это катушка из металлической проволоки.
  3. Жидкостные переменные сопротивления используются для регулирования работы электродвигателей во взрывоопасной атмосфере.
  4. К керамическим реостатам относятся тороидальные приборы. Их устройство описано выше по тексту.

Принцип работы

Вне зависимости от типа реостата, принцип работы у всех примерно аналогичен. Например, ползунковый реостат работает следующим образом:

  • Подключение к сети происходит через клеммы, расположенные с обеих сторон цилиндра;
  • Ток проходит по всей длине, в зависимости от места расположения ползунка. Так, если ползунок находится в центре прибора, то ток проходит только до середины; если ползунок находится в конце прибора, тогда ток проходит целиком, соответственно напряжение максимальное.

Чаще всего задействована в работе только часть прибора, т.е. ползунок не доходит до края реостата. Изменение места расположения бегунка прямо пропорционально изменению силы тока. Подключение реостата к электрической сети осуществляется последовательно.



Реостат печки отопления салона

Понять о том, что неисправен реостат печки отопления салона можно по следующим признакам:

  • салон не прогревается, несмотря на то, что температура двигателя достигла номинала;
  • печка не включается в одном или нескольких режимах;
  • блок реостатов при прозвонке мультиметром показывает значения близкие к короткому замыканию либо обрыву.

Частой неисправностью реостата бывает выход из строя термопредохранителя. При этом печка может включаться только в одном из режимов. Менять полностью весь блок нет необходимости, достаточно перепаять новый предохранитель, с такими же номинальными параметрами.

Электрические реостаты нашли широкое применение в промышленности, технике и автомобилях. Сопротивления используются и для пуска электродвигателей, и в радиотехнике, и в качестве активной нагрузки. Выход из строя резистора способен сделать неработоспособной всю схему в которую он входит.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Прибор был разработан учёным Иоганном Христианом Поггендорфом. Так что же такое реостат и для чего он необходим?

Виды реостатов

Популярным видом реостатов, применяемых в промышленности и электротранспорте, например, трамваях, является устройство, выполненное в виде тора. Регулирование происходит при вращении ползунка вокруг своей оси. При этом он скользит по обмоткам, расположенным тороидально.


Тороидальный вид

Реостат в виде тора меняет сопротивления практически не создавая разрыва в цепи. В полную противоположность ему выступает рычажный вид. Резисторы расположены на специальной раме, и их выбор происходит при помощи рычага. Любая коммутация сопровождается разрывом контура. Помимо этого в схемах с рычажным реостатом отсутствует возможность плавного регулирования сопротивления. Все переключения приводят к ступенчатым изменениям параметров сети. Дискретность шагов зависит от количества резисторов на раме и диапазона регулирования.


Рычажный вид

Как и рычажные, штепсельные реостаты регулируют сопротивление ступенчато. Отличительной особенностью является изменение параметров сети без разрыва цепи. При нахождении штепселя в перемычке, большая часть тока идет вне сопротивления. Количество возможных вариантов включения зависит от размера магазина. Вытаскиванием штепселя происходит перенаправление тока в резистор.


Штепсельный реостат

Читайте также:  Общие функции реле контроля напряжения, тока и фаз

К специфичным видам можно отнести ламповые устройства и жидкостные реостаты. В связи с рядом недостатков данные приборы не нашли широкого распространения. Жидкостные реостаты можно встретить лишь в взрывоопасной среде, где они выполняют функции управления двигателем. Ламповые можно встретить в лабораториях и на уроках физики, так как их надежность и точность недостаточны для повсеместного использования.



Пуск с помощью пускового реостата или пусковых сопротивлений

Рисунок 1. Схема пуска двигателя параллельного возбуждения с помощью пускового реостата (а) и пусковых сопротивлений (б)

Для двигателей с параллельным возбуждением самым распространенным является пуск с помощью пускового реостата или пусковых сопротивлений (рисунок 1). При этом вместо выражения (5), в статье «Общие сведения о двигателях постоянного тока» имеем

Читайте также:  Установка разгрузочного реле на ближний свет Lada Vesta, XRAY

(2)

а в начальный момент пуска, при n = 0,

(3)

где Rп – сопротивление пускового реостата, или пусковое сопротивление. Значение Rп подбирается так, чтобы в начальный момент пуска было Iа = (1,4 – 1,7) Iн [в малых машинах до (2,0 – 2,5) Iн].

Рассмотрим подробнее пуск двигателя параллельного возбуждения с помощью реостата (рисунок 1, а).

Перед пуском (t div > .uk-panel’>» data-uk-grid-margin>

Источник

Как прибор включается в сеть

Включение устройства в цепь осуществляется двумя способами: последовательно и параллельно. При последовательном подключении сопротивление оборудования складывается. Общее сопротивление будет больше любого отдельно взятого.


Схема электрических цепей, где обозначают реостаты с параллельным подключением, выглядит так:


При таком соединении складываются величины, обратные сопротивлению, т.е. общая проводимость состоит из проводимостей каждого компонента.

Представленные чертежи предназначены для простейшего оборудования. Чем больше элементов они будут включать, тем сложнее устройство, созданное на их основе.

  • Для чего в электрической цепи применяют реостат
  • Нормы сопротивления изоляции кабеля — таблица
  • Инструкция по перемотке электродвигателей своими руками в домашних условиях

решение вопроса

Реостат с непрерывным изменением сопротивления Пример реостата с практически непрерывным изменением сопротивления приведен на рис. Только следует задержать все лишнее электричество реостатом с достаточно большим сопротивлением. Металлические реостаты с масляным охлаждением обеспечивают увеличение теплоемкости и постоянной времени нагрева за счет большой теплоемкости и хорошей теплопроводности масла. Эти контакты получили преимущественное распространение. Реостат состоит из ряда одинаковых сопротивлений 9 секций , присоединенных к контактам 8. Она выступает в роли реостата с большим сопротивлением и берет на себя почти всю нагрузку.


Здесь может быть применено несколько схем с одним или двумя сопротивлениями. Недостатки — сравнительно малая мощность переключения и небольшая разрывная мощность, большой износ щетки вследствие трения скольжения и оплавления, затруднительность применения для сложных схем соединения. Масляные Устройства с масляным охлаждением повышают теплоемкость и время нагревания вследствие хорошей теплопроводности масла.

Полное сопротивление цепи состоит из сопротивления Rл лампочки и сопротивления включенной в цепь части проволоки на рисунке заштрихована реостата.

Читайте также:  Светодиодный дюралайт подключение (схема).


Полное сопротивление цепи состоит из сопротивления Rл лампочки и сопротивления включенной в цепь части проволоки на рисунке заштрихована реостата.


Разберемся, как осуществляется контакт между витками обмотки и ползунком. Урок 8. РЕЗИСТОР — СОПРОТИВЛЕНИЕ

Общие сведения

Электрическим током называется движение свободных заряженных частиц под воздействием электромагнитного поля. Любое вещество состоит из атомов, которые образуют кристаллическую решетку при помощи ковалентных связей. При протекании электрического тока по проводнику происходит взаимодействие его частиц с узлами кристаллической решетки. Носители заряда обладают кинетической энергией (Ek), которая зависит от массы частицы (m) и ее скорости (V3). Она определяется по формуле: Ek = m * sqr (V3) / 2.

При столкновении частиц с узлами кристаллической решетки происходит полная или частичная передача энергии атому.

Однако энергетический потенциал свободного носителя заряда восстанавливается, поскольку на него постоянно воздействует электромагнитное поле. Процесс взаимодействия частиц с атомами повторяется определенное количество раз, пока не прекратится воздействие электромагнитного поля или частица не пройдет полностью через проводник. Это физическое явление называется электрическим сопротивлением или проводимостью. Последняя величина является обратной сопротивлению. Сопротивление обозначается литерой «R», а проводимость — «G».

Единицей измерения сопротивления является Ом. Рассчитывается при помощи определенных формул или измеряется электронно-измерительным прибором, который называется омметром.

Физическая зависимость

Величина R зависит от количества свободных носителей заряда, число которых определяется исходя из электронной формулы вещества. Ее можно определить из периодической таблицы химических элементов Д. И. Менделеева. Вещества классифицируются по проводимости следующим образом: проводники, полупроводники и изоляторы (непроводники).

Таблица Д. И. Менделеева

К проводникам относятся все металлы, электролиты и ионизированные газы.

В металлах носителями заряда являются свободные электроны, в электролитах — анионы и катионы, а в ионизированных газах — электроны и ионы. Полупроводники способны проводить электрический ток при определенных условиях. В полупроводниках свободные электроны и дырки являются носителями заряда. Изоляторы или диэлектрики не способны проводить электричество, поскольку в их структуре вообще отсутствуют свободные носители заряда.

Виды кристаллических решеток

Величина, определяющая тип материала и способность его к проводимости, называется удельным сопротивлением (p). Существует и обратная величина относительно удельного сопротивления. Она называется удельной проводимостью (σ) и связана с p следующей формулой: p = 1 / σ. При выполнении расчетов необходимо учитывать зависимость электрического сопротивления материала и от других физических величин или факторов, к которым относятся следующие:

  • геометрические составляющие;
  • электрические величины;
  • температурные показатели.

Эти три группы факторов необходимо учитывать при изготовлении реостатов, резисторов и других элементов резистивной нагрузки. Во время ремонта и проектирования устройств следует также рассматривать все факторы, поскольку неверные расчеты могут привести к выходу радиоаппаратуры из строя.

Вам это будет интересно Технические характеристики и виды электронных диммеров

Читайте также:  Нулевые шины на дин-рейку. Шины заземления

Геометрия материала

К геометрии проводника (полупроводника) относятся его длина (L) и площадь поперечного сечения (S). Величину S можно вычислить по абстрактному алгоритму, который подойдет для всех форм проводников и полупроводников. Он имеет следующий вид:

  1. Визуально определить форму фигуры поперечного сечения (окружность, прямоугольник или квадрат).
  2. Найти в справочной литературе или интернете формулу поиска площади поперечного сечения фигуры.
  3. Измерить необходимые геометрические параметры (например, диаметр) и подставить их в формулу.
  4. Произвести математические вычисления.

Сопротивление проводника

Если проводник является многожильным (состоит из множества проводников), то следует вычислить площадь сечения одного проводника, а затем произвести ее умножение на количество проводников. Исходя из всего, можно вывести зависимость величины сопротивления от типа вещества, длины и площади сечения проводника: R = p * L / S.

Физический смысл зависимости следующий: электрический ток движется по проводнику, тип которого определяется параметром р, и его частицы проходят через определенную длину L с сечением S (при малой площади сечения происходят более частые столкновения электронов с узлами кристаллической решетки).

Однако геометрические параметры — не единственные факторы, влияющие на значение проводимости материала.

Влияние параметров электричества

Для того чтобы учитывать влияние силы тока и напряжения на R, следует обратить внимание на закон Ома. У него существует две формулировки, применяемые для расчетов: для полной цепи или ее участка. Закон Ома для полной цепи показывает зависимость величины тока (i) от электродвижущей силы (e) и величины R, состоящей из суммы внутреннего (Rвнут) и внешнего (Rвнеш) сопротивлений.

Закон Ома для полной цепи

Переменная Rвнут является внутренним сопротивлением источника питания (генератора, аккумулятора, трансформатора и т. д. ). Rвнеш — сопротивление всех потребителей электрической энергии и соединительных проводов. Закон Ома для полной цепи связывает все эти величины таким соотношением: i = e / (Rвнеш + Rвнут). Величина Rвнеш определяется по формуле: Rвнеш = (e / i) — Rвнут.

Для участка цепи соотношение для нахождения сопротивления упрощено, поскольку не учитывается ЭДС и Rвнут. Этот закон показывает прямо пропорциональную зависимость силы тока (I) от напряжения (U), а также обратно пропорциональную от величины сопротивления R: I = U / R. В некоторых случаях для точных вычислений этих факторов может быть недостаточно, поскольку существует еще одна зависимость — температурные показатели материала.

Закон Ома для участка цепи

Влияние температуры на проводимость

Удельное сопротивление влияет на проводимость материала, однако оно зависит от температуры. Для доказательства этой гипотезы нужно собрать электрическую цепь, состоящую из следующих компонентов: лампы накаливания, источника питания (12 В), куска нихромовой проволоки и амперметра. Источник питания можно подобрать любой.

Вам это будет интересно Особенности делителя напряжения

Важно чтобы величина напряжения не была выше, чем номинальное значение разности потенциалов лампы, т. е. аккумулятор 12 В, и лампа тоже должна быть на 12 В. Элементы цепи соединяются последовательно. Кусок проволоки рекомендуется разместить на огнеупорном кирпиче, поскольку, при протекании электротока через нихром, произойдет его нагревание.

Амперметр нужен для мониторинга значений силы тока, которые будут изменяться с течением времени. Лампа является световым «сигнализатором», позволяющим визуально наблюдать за увеличением сопротивления. Яркость ее свечения будет постепенно угасать. При протекании тока по цепи происходит визуальное подтверждение закона Ома для участка цепи. При увеличении R ток уменьшается. Зависимость удельного сопротивления р зависит от следующих переменных величин:

  1. Табличного значения удельного сопротивления (р0), рассчитанного при температуре +20 градусов по шкале Цельсия.
  2. Температурного коэффициента «а», который для металлов считается больше 0 (а > 0), а для электролитов — меньше 0 (a < 0).

Табличное значение р0 можно выяснить из специальных электротехнических справочников или из интернета. Описывается зависимость р от температуры таким соотношением: p = p0 * [1 + a * (t — 20)]. Можно при необходимости произвести подстановку р в формулу зависимости R от длины и сечения: R = p0 * [1 + a * (t — 20)] * L / S.

Не имеет смысла выполнять точные расчеты сопротивления, но эти особенности следует учитывать при изготовлении и ремонте различных устройств.

Сопротивление нужно измерять омметром, однако радиолюбители-профессионалы рекомендуют использовать мультиметр. Он является комбинированным и позволяет измерять не только сопротивление, а также величину тока и напряжения. Существуют модели, которые могут измерять частоту, проверять полупроводниковые приборы и т. д.



Основные типы реостатов

  1. Проволочный реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, натянутой на раму. Проволока проходит через несколько контактов. Соединяя с нужным контактом, можно получить нужное сопротивление.
  2. Ползунковый реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, виток к витку натянутой на стержень из изолирующего материала. Проволока покрыта слоем окалины, который специально получается при производстве. При перемещении ползунка с присоединённым к нему контактом слой окалины соскабливается, и электрический ток протекает из проволоки на ползунок. Чем больше витков от одного контакта до другого, тем больше сопротивление. Такие реостаты применяются в учебном процессе. Разновидностью ползункового реостата является Агометр в котором роль ползунка выполняет колёсико из проводящего материала, двигающееся по поверхности диэлектрического барабана с намотанной на него проволокой.
  3. Жидкостный реостат, представляющий собой бак с электролитом, в который погружаются металлические пластины. Обеспечивается плавное регулирование. Величина сопротивления реостата пропорциональна расстоянию между пластинами, и обратно пропорциональна площади части поверхности пластин, погруженной в электролит [1] .
  4. Ламповый реостат [2] . Состоит из набора параллельно включённых ламп накаливания. Изменением количества включённых ламп изменялось сопротивление реостата. Недостатком лампового реостата является зависимость его сопротивления от степени разогрева нитей ламп.

Для чего нужен РС

Исходя из того, для чего нужен реостат, переменные устройства делятся на следующие виды:

  • пускорегулирующие приборы;
  • пусковые РС;
  • балластники;
  • нагрузочные устройства.

Пускорегулирующие приборы

Реостаты применяют в системе управления электродвигателями постоянного тока. При переменном токе РС включают в схему питания асинхронных двигателей с фазовым ротором.

Пусковые РС

Их основное назначение – это понижение величины силы пускового тока во время старта электромотора. Также такие реостаты работают в системах рекуперативного реостатного торможения. Оно нужно для плавного снижения скорости вращения роторов электромоторов и генераторов.

Балластники

Балластные РС быстро поглощают энергию, которая выделяется при резком торможении электродвигателя. То есть происходит сброс балласта в виде излишней электроэнергии.

Нагрузочные устройства

РС этого вида создают дополнительную нагрузку в электроцепи. Это нужно для поддержания необходимых процессов, связанных с режимом работы различных приборов, двигателей и других устройств.

Конструктивные особенности

По материалу изготовления разделяют реостаты:

  • металлические, получившие наибольшее распространение;
  • керамические, наиболее часто используемые при небольших мощностях;
  • угольные, до сих пор используемые в промышленности;
  • жидкостные, обеспечивающие максимально плавное регулирование.

Отвод тепла может быть как воздушным, так и водяным или масляным. Жидкостное охлаждение применяется при невозможности рассеять тепло с поверхности резистора. Для повышения теплоотдачи может использоваться радиатор с вентилятором.


Датчики, основанные на реостатах

Между положением ползунка реостата, его сопротивлением, силой тока в цепи и напряжением существуют прямые зависимости. Эти особенности лежат в основе датчика угла поворота. Каждому положению ротора в таком устройстве соответствует определенная электрическая величина.

Постепенно такие датчики вытесняются магнитными и оптическими аппаратами. Связанно это с тем что характеристика зависимости угла и сопротивления, помехонеустойчива от влияния температурного воздействия. Также свою долю в вытеснение реостатных датчиков вносит переход к цифровым системам. Резистивные измерители можно встретить только в схемах, использующих аналоговые сигналы.

Масляное охлаждение

Металлические реостаты с масляным типом охлаждения увеличивают теплоемкость и время нагрева из-за хорошей проводимости тепла маслом. Это дает возможность увеличивать нагрузку при кратковременном режиме и сокращать расход материала резисторов и размеры самого реостата.

Назначение - изображение 24

Элементы, которые погружаются в масло, должны обладать большой поверхностью для обеспечения хорошей теплоотдачи. Если резистор закрытого типа, то нет смысла погружать его в масло. Само погружение дает защиту контактам и резисторам от воздействия окружающих факторов. В масле отключающие способности контактов повышаются. Это достоинство реостатов такого типа. Благодаря смазке возможны большие нажатия на контакты. Но есть и недостатки. Это повышение риска опасности пожара и загрязнение помещения.

Реостат можно включать в схему в качестве переменного резистора или же потенциометра. Это обеспечивает плавную регулировку сопротивления и, как следствие, регулирование силы тока и напряжения в цепи. Их часто применяют в лабораториях.

Как сделать своими руками

Самостоятельно балластный реостат проще делать в виде спирали. Используют мягкую (отожженную) проволоку. Понадобится цилиндрический предмет для навивки. Можно использовать отрезок металлической или пластиковой трубы. Для передвижного контакта подойдет провод от сварочного держателя.

Мало сделать балластник своими руками, его необходимо протестировать. Нужно контакты подключить к амперметру. Остается намотать проволочный отрезок на форму, закрепить на электроизоляционной подставке. Конец скрученной проволоки подсоединяют к источнику питания. Держатель присоединяется к перемещаемому токоведущему элементу.

После замеров силы тока амперметром в разных позициях держателя можно нанести на поставку шкалу с токовыми параметрами. Самодельный балластный реостат по точности уступает фабричному. Открытая модель охлаждается естественным образом. Пользоваться устройством нужно осторожно.

Самодельный балластный реостат уступает фабричному по точности и качеству исполнения, поэтому пользоваться устройством нужно осторожно, соблюдая меры безопасности.

03.07.2018

Абсолютным

называется полное давление, создаваемое средой;
барометрическим
— давление, производимое весом воздушного столба атмосферы.
Избыточное давление
представляет собой разность между абсолютным и барометрическим давлением: Р=Р a —Р б

Разрежение

(Р р) — это разность между барометрическим и абсолютным давлением: Р р =Р б —Р a . Глубокое разрежение называется
вакуумом
.

С 1 января 1980 года применяется основная единица давления — паскаль (Па = 1 Н/м 2); кратными единицами являются килопаскаль (1 кПа=1000 Па) и мегапаскаль (1 МПа = 1000 Па).

Управление электрической цепью при помощи реостата

Устройство, с помощью которого происходит изменение сопротивления, называется реостатом. Он может состоять из набора резисторов, подключаемых ступенчато, либо иметь практически непрерывное изменение сопротивления. Существуют приборы позволяющие производить плавную регулировку без разрыва сети. Так как сила тока цепи зависит от напряжения источника и сопротивления, меняя количество подключенных секций реостата, можно косвенно влиять на все основные параметры электрического контура.

Реостат – это управляющий прибор, способный изменять силу тока и напряжение

Реостат
Реостат

Компоненты электрической цепи

Электрические сети зациклены на передаче электроэнергии от источника к потребителю, которые являются основными элементами цепочки. Но кроме них в электрическую цепь вставляются и другие составляющие, к примеру, управляющие элементы, к которым относится реостат или любой другой прибор с таким же принципом действия. Устройство реостата – это проводник определенного сечения и длины, через которые можно узнать сопротивление проводника. Конечно, обговаривается и его материал. Изменяя сопротивление прибора, а, точнее, проводника, можно регулировать величину силы тока и напряжения в сети. Итак, реостат – это прибор, регулирующий напряжение и ток.

Реостат
Реостат

Металлические реостаты

Что такое реостат из металла? Это элемент, имеющий воздушный тип охлаждения. Такие реостаты наиболее распространены, так как их наиболее легко можно приспособить к самым разным рабочим условиям. Это относится как к тепловым и электрическим характеристикам, так и к параметрам конструкции. Они могут изготавливаться со ступенчатым или непрерывным типом изменения сопротивления.

Переключатель является плоским. В нем есть подвижный контакт, который скользит по контактам неподвижным в одной и той же плоскости. Те контакты, которые не двигаются, выполнены в форме болтов, имеющих плоские головки цилиндрического или полусферического типа в форме пластин либо шин, которые расположены по дуге в один ряд или два. Тот контакт, который двигается, называется щеткой. Он может быть рычажным или мостиковым по своему типу выполнения.

Еще есть разделение на самоустанавливающийся и несамоустанавливающийся. Последний вариант по конструкции проще, но, так как контакт часто нарушается, он не является надежным в использовании. Самоустанавливающийся подвижный контакт обеспечивает необходимую степень нажатия и в эксплуатации более надежен.

Читайте также:  Регулировка дверных замков гольф 2

Значение слова Реостат по словарю Брокгауза и Ефрона:

Реостат (Rheostat) — так называется прибор, служащий для измерения электрического (или гальванического) сопротивления проводника. Под этим названием впервые был описан прибор Витстоном в 1843 г. (Wheatstone). Подобный же прибор (агометр), независимо от Витстона, был устроен русским академиком Якоби. Этот последний был затем усовершенствован Э. X. Ленцом. Способ измерения с помощью этих приборов основан на введении в данную гальваническую цепь тонкой нейзильберовой проволоки известной длины. Проволока эта намотана на мраморный цилиндр, причем один конец сообщается с металлической осью цилиндра. При вращении цилиндра или часть проволоки сматывается на другой, металлический цилиндр (Витстон), или по проволоке перемещается металлическое колесико (Якоби), или передвигается вдоль своей оси сам цилиндр, а колесо остается на месте (Ленц). Н. А. Г.

Регулируемые резисторы

Регулируемые резисторы — резисторы, сопротивление которых можно изменять в определенных пределах, применяют в качестве регуляторов усиления, громкости, тембра и т. д. Общее обозначение такого резистора состоит из базового символа и знака регулирования, причем независимо от положения символа на схеме стрелку, обозначающую регулирование, проводят в направлении снизу вверх под углом 45 градусов.

Регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Кому из владельцев радиоприемника или магнитофона не приходилось после двух-трех лет эксплуатации слышать шорохи п треоки из громкоговорителя при регулировании громкости.

Причина этого неприятного явления — в нарушении контакта щетки с токопроводящим слоем или износ последнего. Поэтому, если основным требованием к переменному резистору является повышенная надежность, применяют резисторы со ступенчатым регулированием.

Такой резистор может быть выполнен на базе переключателя на несколько положений, к контактам которого подключены ре-, зисторы постоянного сопротивления. На схемах эти подробности не показывают, ограничиваясь изображением символа регулируемого резистора со знаком ступенчатого регулирования, а если необходимо, указывают и число ступеней (рис. 8).

Рис. 8. Изображение символа регулируемого резистора со знаком ступенчатого регулирования.

Некоторые переменные резисторы изготовляют с одним, двумя и даже с тремя отводами. Такие резисторы применяют, например, в тонкомпенсиро-ванных регуляторах громкости, используемых в высококачественной звуковоспроизводящей аппаратуре. Отводы изображают в виде линий, отходящих от длинной стороны основного символа (рис. 9).

Рис. 9. Обозначение переменного резистора с отводами.

Для регулирования громкости, тембра, уровня записи в стереофонической аппаратуре, частоты в измерительных генераторах сигналов и т. д. применяют сдвоенные переменные резисторы, сопротивления которых изменяются одновременно при повороте общей оси (или перемещении движка). На схемах символы входящих в них резисторов стараются расположить возможно ближе друг к другу, а механическую связь показывают либо двумя сплошными линиями, либо одной штриховой (рис. 10,а).

   Рис. 10. Внешний вид и обозначение блоков с переменными резисторами.

Если же сделать этого не удается, т. е. символы резисторов оказываются на большом удалении один от другого, механическую связь изображают отрезками штриховой линии (рис. 10,6). Принадлежность резисторов к одному сдвоенному блоку показывают в этом случае и в позиционном обозначении (R1.1—первый — по схеме — резистор сдвоенного переменного резистора R1, R1.2 — второй).

Встречаются и такие сдвоенные переменные резисторы, в которых каждым резистором можно управлять отдельно (ось одного проходит внутри трубчатой оси другого). Механической связи, обеспечивающей одновременное изменение сопротивлений обоих резисторов, в этом случае нет, поэтому и на схемах ее не показывают (принадлежность к сдвоенному резистору указывают только в позиционном обозначении).

В бытовой радиоаппаратуре часто применяют переменные резисторы, объединенные с одним или двумя выключателями. Символы их контактов размещают на схемах рядом с обозначением переменного резистора и соединяют штриховой линией с жирной точкой, которую изображают с той стороны прямоугольника, при перемещении к которой узел щеточного контакта (движок) воздействует на выключатель (рис. 11,а).

Для чего в электрической цепи применяют реостат
Реостат — что это такое
Реостат — что это такое
Условные обозначения в различных электрических схемах
Условные обозначения в различных электрических схемах
Что такое резистор?
Что такое резистор?
Переменный резистор: назначение, устройство, виды, проверка мультиметром
Управление электрической цепью при помощи реостата
Управление электрической цепью при помощи реостата
Реостат – это управляющий прибор, способный изменять силу тока и напряжение
Реостат – это управляющий прибор, способный изменять силу тока и напряжение
Для чего нужен реостат, принцип его работы в цепи
Для чего нужен реостат, принцип его работы в цепи
Реостат
Реостат
§ 47. реостаты

Рис. 11. Обозначение переменного резистора совмещенного с переключателем.

При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней. В случае, если символы резистора и выключателя удалены один от другого, механическую связь показывают отрезками штриховых линий (рис. 11,6).

Источники

  • https://gerkon-market.ru/montazh/elektronnyj-reostat.html
  • https://int43.ru/info-baza/reostat-eto.html
  • https://LesSale.ru/glavnoe/dlya-chego-nuzhen-reostat.html
  • https://encom74.ru/naznacenie-reostata-oboznacenie-na-sheme-dla-cego-nuzny-reostaty/
  • https://beasthackerz.ru/computer/reostat-kak-rabotaet-dlya-chego-nuzhen-reostat-princip-ego-raboty-v.html
  • https://vdn-plus.ru/reostat-eto-pribor-dlya-regulirovaniya-sily-toka-v-tsepi/
  • https://amperof.ru/instrument/reostat.html
  • https://principraboty.ru/princip-raboty-reostata/
  • https://oxotnadzor.ru/reostat-primenyayut-dlya-regulirovaniya-v-tsepi-napryazheniya-sily-toka-raboty-napryazheniya/
  • https://lanos-volgograd.ru/kak-reostatom-regulirovat-napryazheniye/

[свернуть]